Categorical resolutions (an optimistic view)

Calum Crossley

3 Nov 2025

Take a roof $X \stackrel{f}{\swarrow} Z \stackrel{g}{\searrow} Y$ of smooth projective varieties.

- If $f^*K_X = g^*K_Y$, then $D^b(X) = D^b(Y)$.
- If $f^*K_X > g^*K_Y$, then $D^b(X) = \langle D^b(Y), \ldots \rangle$.

Take a roof $X \stackrel{f}{\swarrow} Z \stackrel{g}{\searrow} Y$ of smooth projective varieties.

- If $f^*K_X = g^*K_Y$, then $D^b(X) = D^b(Y)$.
- If $f^*K_X > g^*K_Y$, then $D^b(X) = \langle D^b(Y), \ldots \rangle$.

⇒ MMP passes to smaller and smaller admissible components.

Take a roof $X \stackrel{f}{\swarrow} Z \stackrel{g}{\searrow} Y$ of smooth projective varieties.

- If $f^*K_X = g^*K_Y$, then $D^b(X) = D^b(Y)$.
- If $f^*K_X > g^*K_Y$, then $D^b(X) = \langle D^b(Y), \ldots \rangle$.

→ MMP passes to smaller and smaller admissible components.

Example (Crepant resolutions should be *D*-unique)

All crepant $(K_{\widetilde{X}} = \pi^* K_X)$ resolutions $\pi : \widetilde{X} \to X$ of a Gorenstein singularity are K-equivalent \implies conjecturally D-equivalent.

Take a roof $X \stackrel{f}{\swarrow} Z \stackrel{g}{\swarrow} Y$ of smooth projective varieties.

- If $f^*K_X = g^*K_Y$, then $D^b(X) = D^b(Y)$.
- If $f^*K_X > g^*K_Y$, then $D^b(X) = \langle D^b(Y), \ldots \rangle$.

⇒ MMP passes to smaller and smaller admissible components.

Example (Crepant resolutions should be *D*-unique)

All crepant $(K_{\widetilde{X}} = \pi^* K_X)$ resolutions $\pi : \widetilde{X} \to X$ of a Gorenstein singularity are K-equivalent \Longrightarrow conjecturally D-equivalent.

 \implies At the level of $D^b(-)$, MMP stops at a *smooth* minimal model. (when a crepant resolution exists)

Minimal Resolution Conjecture (Bondal–Orlov '02)

- $D^b(X)$ has a minimal "nc-desingularization", which embeds fully faithfully (SOD) in all other desingularizations, and hence is unique.
- If $\pi: \widetilde{X} \to X$ is a crepant resolution, then $D^b(\widetilde{X})$ is the minimal desingularization of $D^b(X)$.

Minimal Resolution Conjecture (Bondal–Orlov '02)

- $D^b(X)$ has a minimal "nc-desingularization", which embeds fully faithfully (SOD) in all other desingularizations, and hence is unique.
- If $\pi: \widetilde{X} \to X$ is a crepant resolution, then $D^b(\widetilde{X})$ is the minimal desingularization of $D^b(X)$.

⇒ "Categorical" MMP *always* stops at a smooth minimal model. (crepant resolution = the categorical minimal model is geometric)

Minimal Resolution Conjecture (Bondal–Orlov '02)

- $D^b(X)$ has a minimal "nc-desingularization", which embeds fully faithfully (SOD) in all other desingularizations, and hence is unique.
- If $\pi: \widetilde{X} \to X$ is a crepant resolution, then $D^b(\widetilde{X})$ is the minimal desingularization of $D^b(X)$.
- ⇒ "Categorical" MMP *always* stops at a smooth minimal model. (crepant resolution = the categorical minimal model is geometric)

Remark ("stacky crepant resolutions")

By [BKR], crepant resolutions of certain (cDV) quotient singularities are D-equivalent to the (smooth) orbifold quotient [X/G].

Generalizing this, $D^b([X/G])$ should always be the minimal desingularization for the coarse moduli space X/G.

Background

• Need to define "nc-desingularization".

- Need to define "nc-desingularization".
- 2 It's not clear what the correct definition should be.

- Need to define "nc-desingularization".
- 2 It's not clear what the correct definition should be.
- With a naive definition, there are counter-examples. (arguably non-geometric ones)

- Need to define "nc-desingularization".
- 2 It's not clear what the correct definition should be.
- With a naive definition, there *are* counter-examples. (arguably non-geometric ones)

Remark

Even with a good definition, there is no clear proof approach; how do you construct a functor between arbitrary desingularizations?

Other context

Why else do we care?

- Appears naturally in homological mirror symmetry (e.g. degenerations, or proving mirror symmetry for singularities via the resolution)
- Appears naturally in homological projective duality (e.g. K3 constructed from a singular cubic fourfold giving a categorical resolution of the Kuznetsov component).
- (Conjectural) unique minimal resolutions lead to (conjectural) invariants of singularities (like dual graphs of ADE surfaces).
- Like DK-conjecture, predicted equivalences between minimal resolutions can be unexpected, hinting at deeper structure in the constructions used to build the categories involved.
- There are actual hands-on constructions, allowing us to study concrete examples, and we find interesting structure which is poorly understood (e.g. null categories, relative singularity categories).

Suppose $\pi:\widetilde{X}\to X$ is a resolution of singularities.

Suppose $\pi:\widetilde{X}\to X$ is a resolution of singularities.

$$D^b(\widetilde{X})$$
 π^*
 π^*
 $\mathfrak{Perf}(X) \hookrightarrow D^b(X).$

Suppose $\pi: \widetilde{X} \to X$ is a resolution of singularities.

$$D^{b}(\widetilde{X})$$

$$\pi^{*} \uparrow \qquad \qquad \pi_{*}$$

$$\mathfrak{Perf}(X) \hookrightarrow D^{b}(X).$$

If $\pi_*\pi^*=1$ (i.e. π^* fully faithful, π_* ess. surjective) $\iff \pi_*\mathcal{O}_{\widetilde{X}}=\mathcal{O}_X$, we say X has rational singularities.

Suppose $\pi: \widetilde{X} \to X$ is a resolution of singularities.

$$D^{b}(\widetilde{X})$$

$$\pi^{*} \uparrow \qquad \qquad \pi_{*}$$

$$\mathfrak{Perf}(X) \hookrightarrow D^{b}(X).$$

If $\pi_*\pi^*=1$ (i.e. π^* fully faithful, π_* ess. surjective) $\iff \pi_*\mathcal{O}_{\widetilde{X}}=\mathcal{O}_X$, we say X has rational singularities.

Remark

- Crepant resolution \implies rational singularities.
- Terminal singularities \implies rational singularities.

Definition (Kuznetsov '08)

A weak categorical resolution is a smooth category $\operatorname{\mathscr{C}}$ with adjoint functors

satisfying
$$\pi_*\pi^*=1$$
.

Definition (Kuznetsov '08)

A weak categorical resolution is a smooth category $\operatorname{\mathscr{C}}$ with adjoint functors

satisfying $\pi_*\pi^*=1$. It is weakly crepant if $\pi^!=\pi^*$, where $\pi^*\dashv\pi_*\dashv\pi^!$.

Definition (Kuznetsov '08)

A weak categorical resolution is a smooth category $\operatorname{\mathscr{C}}$ with adjoint functors

$$\begin{array}{c}
\mathscr{C} \\
\pi^* \uparrow \\
 & \downarrow \\$$

satisfying $\pi_*\pi^*=1$. It is weakly crepant if $\pi^!=\pi^*$, where $\pi^*\dashv\pi_*\dashv\pi^!$.

Remark

- If X has irrational singularities, $D^b(\widetilde{X})$ is not a categorical resolution!
- ullet It is a weakly crepant categorical resolution iff $\pi:\widetilde{X} o X$ is crepant.

Definition (Kuznetsov '08)

A weak categorical resolution is a smooth category ${\mathscr C}$ with adjoint functors

satisfying $\pi_*\pi^*=1$. It is *weakly crepant* if $\pi^!=\pi^*$, where $\pi^*\dashv\pi_*\dashv\pi^!$.

Remark

- If X has irrational singularities, $D^b(\tilde{X})$ is not a categorical resolution!
- ullet It is a weakly crepant categorical resolution iff $\pi:\widetilde{X} o X$ is crepant.

The justification for this definition when X has irrational singularities is a theorem of Kuznetsov and Lunts, which we will see in a moment.

Recall: X is smooth iff $\mathfrak{Perf}(X)$ is smooth.

Recall: X is smooth iff $\mathfrak{Perf}(X)$ is smooth.

Theorem (Lunts '10)

The category $D^b(X)$ is smooth for any separated scheme X of finite type over a perfect field, provided a dualizing complex exists.

Recall: X is smooth iff $\mathfrak{Perf}(X)$ is smooth.

Theorem (Lunts '10)

The category $D^b(X)$ is smooth for any separated scheme X of finite type over a perfect field, provided a dualizing complex exists.

Corollary

 $\mathscr{C}=D^b(X)$, $\pi^*=\pi_*=1$ is a universal weak categorical resolution.

Recall: X is smooth iff $\mathfrak{Perf}(X)$ is smooth.

Theorem (Lunts '10)

The category $D^b(X)$ is smooth for any separated scheme X of finite type over a perfect field, provided a dualizing complex exists.

Corollary

 $\mathscr{C}=D^b(X)$, $\pi^*=\pi_*=1$ is a universal weak categorical resolution.

Example

Take $X = \operatorname{Spec} k[x]/x^2$. Then $D^b(X) = \langle k[x]/x \rangle$, and $\operatorname{Ext}_X^*(k,k) = k[\theta]$ where $|\theta| = 1$, so by Koszul duality $D^b(X) = D^b(k[\theta])$ which is smooth like \mathbb{A}^1 .

Recall: X is smooth iff $\mathfrak{Perf}(X)$ is smooth.

Theorem (Lunts '10)

The category $D^b(X)$ is smooth for any separated scheme X of finite type over a perfect field, provided a dualizing complex exists.

Corollary

 $\mathscr{C}=D^b(X)$, $\pi^*=\pi_*=1$ is a universal weak categorical resolution.

Example

Take $X = \operatorname{Spec} k[x]/x^2$. Then $D^b(X) = \langle k[x]/x \rangle$, and $\operatorname{Ext}_X^*(k,k) = k[\theta]$ where $|\theta| = 1$, so by Koszul duality $D^b(X) = D^b(k[\theta])$ which is smooth like \mathbb{A}^1 . This is not proper: $\dim_k(k[\theta]) = \infty$.

Definition

A proper categorical resolution is a weak categorical resolution such that

- \mathscr{C} is "linear over $D^b(X)$ ", i.e. $\operatorname{Hom}_{\mathscr{C}} = R\Gamma_X \circ \mathcal{H}om_{\mathscr{C}}$ where $\mathcal{H}om_{\mathscr{C}}(-,-) \in D^b(X)$, plus naturality conditions.
- The functors π^* , π_* respect this structure.

Jargon: a module over the tensor category $(\mathfrak{Perf}(X), \otimes)$.

Definition

A proper categorical resolution is a weak categorical resolution such that

- \mathscr{C} is "linear over $D^b(X)$ ", i.e. $\operatorname{Hom}_{\mathscr{C}} = R\Gamma_X \circ \mathcal{H}om_{\mathscr{C}}$ where $\mathcal{H}om_{\mathscr{C}}(-,-) \in D^b(X)$, plus naturality conditions.
- The functors π^* , π_* respect this structure.

Jargon: a module over the tensor category $(\mathfrak{Perf}(X), \otimes)$.

Idea: $\mathcal{H}om_{\mathscr{C}}(-,-) \in D^b(X)$ means Homs in \mathscr{C} are finite rank (coherent) relative to $X \implies$ proper category relative to X.

Definition

Background

A proper categorical resolution is a weak categorical resolution such that

- \mathscr{C} is "linear over $D^b(X)$ ", i.e. $\operatorname{Hom}_{\mathscr{C}} = R\Gamma_X \circ \mathcal{H}om_{\mathscr{C}}$ where $\mathcal{H}om_{\mathscr{C}}(-,-)\in D^b(X)$, plus naturality conditions.
- The functors π^* , π_* respect this structure.

Jargon: a module over the tensor category $(\mathfrak{Perf}(X), \otimes)$.

Idea: $\mathcal{H}om_{\mathscr{C}}(-,-) \in D^b(X)$ means Homs in \mathscr{C} are finite rank (coherent) relative to $X \implies$ proper category relative to X.

Definition (Kuznetsov '08)

A relative Serre functor for a proper categorical resolution is an endofunctor $S:\mathscr{C}\to\mathscr{C}$ with a natural isomorphism

$$\mathcal{H}om_{\mathscr{C}}(x,S(y)) = \mathcal{H}om_X(\mathcal{H}om_{\mathscr{C}}(y,x),\mathcal{O}_X).$$

The resolution is strongly crepant if $id_{\mathscr{C}}$ is a relative Serre functor.

Remark

It follows that $\pi^! = S \circ \pi^*$, so strongly crepant \implies weakly crepant.

Example

For $\pi:\widetilde{X}\to X$ the relative Serre functor is $-\otimes \omega_{\widetilde{X}/X}[\dim\widetilde{X}-\dim X]$, and strong crepancy \iff weak crepancy \iff crepancy: $\omega_{\widetilde{X}/X}=\mathcal{O}_{\widetilde{X}}.$

Theorem (Kuznetsov-Lunts '15)

Proper categorical resolutions exist for any separated scheme of finite type in characteristic zero.

Conjecture (Kuznetsov '08)

Strongly crepant categorical resolutions are minimal.

Example: dual numbers

Take $X = \operatorname{Spec} k[x]/x^2$ again. A proper categorical resolution has to be a smooth and proper category (since $k[x]/x^2$ is finite over k).

Example: dual numbers

Take $X = \operatorname{Spec} k[x]/x^2$ again. A proper categorical resolution has to be a smooth and proper category (since $k[x]/x^2$ is finite over k).

Use the compactification $\mathbb{P}^1_{\theta;\phi}$, $|\theta|=1$ of $D^b(X)=D^b(k[\theta])$. Beilinson:

$$\mathscr{C} = D^b \left(\bullet \xrightarrow{-----}_{\phi} \bullet \right),$$

which contains $\mathfrak{Perf}(X)$ as the subcategory generated by $\mathcal{O}_{[0:1]} = \mathsf{cone}(\theta)$.

Example: dual numbers

Take $X = \operatorname{Spec} k[x]/x^2$ again. A proper categorical resolution has to be a smooth and proper category (since $k[x]/x^2$ is finite over k).

Use the compactification $\mathbb{P}^1_{\theta:\phi}$, $|\theta|=1$ of $D^b(X)=D^b(k[\theta])$. Beilinson:

$$\mathscr{C} = D^b \left(\bullet \xrightarrow{-----}_{\phi} \bullet \right),$$

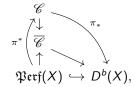
which contains $\mathfrak{Perf}(X)$ as the subcategory generated by $\mathcal{O}_{[0:1]} = \mathsf{cone}(\theta)$.

Two perspectives:

- Smoothing $\mathfrak{Perf}(X)$: finding a smooth category with an object having endomorphisms $k[x]/x^2$ (skyscraper sheaf in \mathbb{P}^1).
- Compactifying $D^b(X)$: compactifying \mathbb{A}^1 to \mathbb{P}^1 .

Minimality, SOD's and null categories

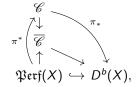
Suppose $\overline{\mathscr{C}}$ is the minimal resolution:



with
$$\mathscr{C} = \langle \overline{\mathscr{C}}, \mathcal{A} \rangle$$
.

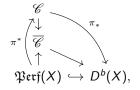
Minimality, SOD's and null categories

Suppose $\overline{\mathscr{C}}$ is the minimal resolution:



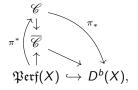
with
$$\mathscr{C} = \langle \overline{\mathscr{C}}, \mathcal{A} \rangle$$
. Then $\mathcal{A} \subseteq \ker \pi_*$

Suppose $\overline{\mathscr{C}}$ is the minimal resolution:



with $\mathscr{C}=\langle \overline{\mathscr{C}}, \mathcal{A} \rangle$. Then $\mathcal{A}\subseteq \ker \pi_* \implies \ker \pi_*=\langle \mathcal{K}, \mathcal{A} \rangle$ with \mathcal{A} smooth and proper: "categorical absorption of singularities" for $\ker \pi_*$.

Suppose $\overline{\mathscr{C}}$ is the minimal resolution:

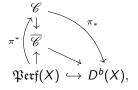


with $\mathscr{C}=\langle \overline{\mathscr{C}}, \mathcal{A} \rangle$. Then $\mathcal{A}\subseteq \ker \pi_* \implies \ker \pi_*=\langle \mathcal{K}, \mathcal{A} \rangle$ with \mathcal{A} smooth and proper: "categorical absorption of singularities" for $\ker \pi_*$.

Definition

We call ker π_* the *null category* (or *kernel category*).

Suppose $\overline{\mathscr{C}}$ is the minimal resolution:



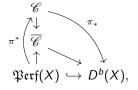
with $\mathscr{C}=\langle \overline{\mathscr{C}}, \mathcal{A} \rangle$. Then $\mathcal{A}\subseteq \ker \pi_* \implies \ker \pi_*=\langle \mathcal{K}, \mathcal{A} \rangle$ with \mathcal{A} smooth and proper: "categorical absorption of singularities" for $\ker \pi_*$.

Definition

We call ker π_* the *null category* (or *kernel category*).

Note: \mathscr{C} is minimal iff $\mathcal{A}=0$ is the only possible absorption for $\ker \pi_*$.

Suppose $\overline{\mathscr{C}}$ is the minimal resolution:



with $\mathscr{C}=\langle \overline{\mathscr{C}}, \mathcal{A} \rangle$. Then $\mathcal{A}\subseteq \ker \pi_* \implies \ker \pi_*=\langle \mathcal{K}, \mathcal{A} \rangle$ with \mathcal{A} smooth and proper: "categorical absorption of singularities" for $\ker \pi_*$.

Definition

We call ker π_* the *null category* (or *kernel category*).

Note: $\mathscr C$ is minimal iff A=0 is the only possible absorption for $\ker \pi_*$. This is implied by the Calabi–Yau condition $S|_{\ker \pi_*}=[n]$, a weakening of strong crepancy, when $\ker \pi_*$ is connected.

Example

For the resolution $\mathbb{P}^1_{\theta:\phi}$ of the dual numbers, the null category is generated by $\mathrm{cone}(\phi)$, with endomorphisms $k[y]/y^2$ where |y|=2.

Example

For the resolution $\mathbb{P}^1_{\theta:\phi}$ of the dual numbers, the null category is generated by $\operatorname{cone}(\phi)$, with endomorphisms $k[y]/y^2$ where |y|=2.

Nodal singularities in all dimensions have categorical resolutions with null categories generated by a (2 or 3)-spherical object. (Cattani et. al. '23)

Example

For the resolution $\mathbb{P}^1_{\theta:\phi}$ of the dual numbers, the null category is generated by $\operatorname{cone}(\phi)$, with endomorphisms $k[y]/y^2$ where |y|=2.

Nodal singularities in all dimensions have categorical resolutions with null categories generated by a (2 or 3)-spherical object. (Cattani et. al. '23)

Conversely, suppose we have a categorical absorption for X: $D^b(X) = \langle \mathcal{X}, \mathcal{A} \rangle$ with $\mathcal{A} \subset \mathfrak{Perf}(X)$.

Example

For the resolution $\mathbb{P}^1_{\theta:\phi}$ of the dual numbers, the null category is generated by $\operatorname{cone}(\phi)$, with endomorphisms $k[y]/y^2$ where |y|=2.

Nodal singularities in all dimensions have categorical resolutions with null categories generated by a (2 or 3)-spherical object. (Cattani et. al. '23)

Conversely, suppose we have a categorical absorption for X: $D^b(X) = \langle \mathcal{X}, \mathcal{A} \rangle$ with $\mathcal{A} \subset \mathfrak{Perf}(X)$. Then $\mathcal{A} \subset \mathfrak{Perf}(X) \subset \mathscr{C}$, giving $\mathscr{C} = \langle \mathscr{C}', \mathcal{A} \rangle$, where \mathscr{C}' is a resolution for \mathcal{X} .

Example

For the resolution $\mathbb{P}^1_{\theta:\phi}$ of the dual numbers, the null category is generated by $\operatorname{cone}(\phi)$, with endomorphisms $k[y]/y^2$ where |y|=2.

Nodal singularities in all dimensions have categorical resolutions with null categories generated by a (2 or 3)-spherical object. (Cattani et. al. '23)

Conversely, suppose we have a categorical absorption for X: $D^b(X) = \langle \mathcal{X}, \mathcal{A} \rangle$ with $\mathcal{A} \subset \mathfrak{Perf}(X)$. Then $\mathcal{A} \subset \mathfrak{Perf}(X) \subset \mathscr{C}$, giving $\mathscr{C} = \langle \mathscr{C}', \mathcal{A} \rangle$, where \mathscr{C}' is a resolution for \mathcal{X} . Conversely, any such \mathscr{C}' can be glued to \mathcal{A} to give a resolution for $D^b(X)$ with the same null category.

Example

For the resolution $\mathbb{P}^1_{\theta:\phi}$ of the dual numbers, the null category is generated by $\operatorname{cone}(\phi)$, with endomorphisms $k[y]/y^2$ where |y|=2.

Nodal singularities in all dimensions have categorical resolutions with null categories generated by a (2 or 3)-spherical object. (Cattani et. al. '23)

Conversely, suppose we have a categorical absorption for X: $D^b(X) = \langle \mathcal{X}, \mathcal{A} \rangle$ with $\mathcal{A} \subset \mathfrak{Perf}(X)$. Then $\mathcal{A} \subset \mathfrak{Perf}(X) \subset \mathscr{C}$, giving $\mathscr{C} = \langle \mathscr{C}', \mathcal{A} \rangle$, where \mathscr{C}' is a resolution for \mathcal{X} . Conversely, any such \mathscr{C}' can be glued to \mathcal{A} to give a resolution for $D^b(X)$ with the same null category.

```
{categorical resolutions of D^b(X)} = {categorical resolutions of the absorbing subcategory \mathcal{X}}.
```

Example

For the resolution $\mathbb{P}^1_{\theta:\phi}$ of the dual numbers, the null category is generated by $\operatorname{cone}(\phi)$, with endomorphisms $k[y]/y^2$ where |y|=2.

Nodal singularities in all dimensions have categorical resolutions with null categories generated by a (2 or 3)-spherical object. (Cattani et. al. '23)

Conversely, suppose we have a categorical absorption for X: $D^b(X) = \langle \mathcal{X}, \mathcal{A} \rangle$ with $\mathcal{A} \subset \mathfrak{Perf}(X)$. Then $\mathcal{A} \subset \mathfrak{Perf}(X) \subset \mathscr{C}$, giving $\mathscr{C} = \langle \mathscr{C}', \mathcal{A} \rangle$, where \mathscr{C}' is a resolution for \mathcal{X} . Conversely, any such \mathscr{C}' can be glued to \mathcal{A} to give a resolution for $D^b(X)$ with the same null category.

Note: if $\mathcal{X} = D^b(R)$, we get $D_{Sg}(X) = D_{Sg}(R)$.

Auslander algebras (Kuznetsov–Lunts)

If S is a non-reduced thickening of a smooth variety S_0 , there is a sheaf of algebras \mathcal{A}_{S/S_0} on S which is a proper categorical resolution, with an SOD:

$$D^b(\mathcal{A}_{S/S_0}) = \langle D^b(S_0), \ldots, D^b(S_0) \rangle.$$

The number of components corresponds to the order of thickening.

Auslander algebras (Kuznetsov-Lunts)

If S is a non-reduced thickening of a smooth variety S_0 , there is a sheaf of algebras \mathcal{A}_{S/S_0} on S which is a proper categorical resolution, with an SOD:

$$D^b(\mathcal{A}_{S/S_0}) = \langle D^b(S_0), \ldots, D^b(S_0) \rangle.$$

The number of components corresponds to the order of thickening.

Example

The dual numbers $k[x]/x^2$ are a 2nd order thickening of a point, so we get an SOD: $D^b(\mathcal{A}) = \langle D^b(\mathrm{pt}), D^b(\mathrm{pt}) \rangle$. The Auslander resolution $D^b(\mathcal{A})$ is equivalent to the $\mathbb{P}^1_{\theta;\phi}$ resolution.

Auslander algebras (Kuznetsov–Lunts)

If S is a non-reduced thickening of a smooth variety S_0 , there is a sheaf of algebras \mathcal{A}_{S/S_0} on S which is a proper categorical resolution, with an SOD:

$$D^b(\mathcal{A}_{S/S_0}) = \langle D^b(S_0), \ldots, D^b(S_0) \rangle.$$

The number of components corresponds to the order of thickening.

Example

The dual numbers $k[x]/x^2$ are a 2nd order thickening of a point, so we get an SOD: $D^b(\mathcal{A}) = \langle D^b(\mathrm{pt}), D^b(\mathrm{pt}) \rangle$. The Auslander resolution $D^b(\mathcal{A})$ is equivalent to the $\mathbb{P}^1_{\theta:\phi}$ resolution.

The Kuznetsov–Lunts existence theorem is proved by gluing Auslander resolutions of thickenings of the blowup centres appearing in a resolution of singularities.

NC(C)R's (Van den Bergh)

In nice situations (e.g. quotient singularities), when $X = \operatorname{Spec} R$, there can be a reflexive R-module M such that $\Lambda = \operatorname{End}_R(M)$ has good homological properties.

NC(C)R's (Van den Bergh)

In nice situations (e.g. quotient singularities), when $X = \operatorname{Spec} R$, there can be a reflexive R-module M such that $\Lambda = \operatorname{End}_R(M)$ has good homological properties. It often gives a strongly crepant categorical resolution $D^b(\Lambda)$.

NC(C)R's (Van den Bergh)

In nice situations (e.g. quotient singularities), when $X = \operatorname{Spec} R$, there can be a reflexive R-module M such that $\Lambda = \operatorname{End}_R(M)$ has good homological properties. It often gives a strongly crepant categorical resolution $D^b(\Lambda)$.

These "non-commutative resolutions" are a representation-theoretic construction which can be viewed as giving special categorical resolutions which have tilting objects.

NC(C)R's (Van den Bergh)

In nice situations (e.g. quotient singularities), when $X = \operatorname{Spec} R$, there can be a reflexive R-module M such that $\Lambda = \operatorname{End}_R(M)$ has good homological properties. It often gives a strongly crepant categorical resolution $D^b(\Lambda)$.

These "non-commutative resolutions" are a representation-theoretic construction which can be viewed as giving special categorical resolutions which have tilting objects.

Caveat

NCCR's are not known to always give categorical resolutions due to a technical obstruction, but it is expected and known in many cases.

Definition

A Landau–Ginzburg model is a smooth variety U with a \mathbb{C}^* -action (R-charge) and a global function $W \in H^0(U, \mathcal{O}_U)$ (the superpotential) with is \mathbb{C}^* -equivariant of weight 2.

Definition

A Landau–Ginzburg model is a smooth variety U with a \mathbb{C}^* -action (R-charge) and a global function $W \in H^0(U, \mathcal{O}_U)$ (the superpotential) with is \mathbb{C}^* -equivariant of weight 2. Equivalently, the coordinate ring \mathcal{O}_U is graded such that |W|=2.

Definition

A Landau–Ginzburg model is a smooth variety U with a \mathbb{C}^* -action (R-charge) and a global function $W \in H^0(U, \mathcal{O}_U)$ (the superpotential) with is \mathbb{C}^* -equivariant of weight 2. Equivalently, the coordinate ring \mathcal{O}_U is graded such that |W|=2.

Definition

The (derived) category of matrix factorizations on a Landau–Ginzburg model is denoted MF(U, W), with objects given by \mathbb{C}^* -equivariant sheaves with \mathbb{C}^* -equivariant endomorphisms d satisfying $d^2 = W \cdot \mathrm{id}$.

Definition

A Landau–Ginzburg model is a smooth variety U with a \mathbb{C}^* -action (R-charge) and a global function $W \in H^0(U, \mathcal{O}_U)$ (the superpotential) with is \mathbb{C}^* -equivariant of weight 2. Equivalently, the coordinate ring \mathcal{O}_U is graded such that |W|=2.

Definition

The (derived) category of matrix factorizations on a Landau–Ginzburg model is denoted MF(U, W), with objects given by \mathbb{C}^* -equivariant sheaves with \mathbb{C}^* -equivariant endomorphisms d satisfying $d^2 = W \cdot \mathrm{id}$.

Fact

Because $W = \frac{1}{2}dd + \frac{1}{2}dd$ and $\partial_x(W) = \partial_x(d)d + d\partial_x(d)$ are null-homotopies, the category MF(U,W) is linear over $Crit(W) \subset U$.

Facts

• MF(U, W) is linear over Crit(W).

Facts

- MF(U, W) is linear over Crit(W).
- ullet MF(U, W) is smooth, since we assumed U is smooth.

Facts

- MF(U, W) is linear over Crit(W).
- MF(U, W) is smooth, since we assumed U is smooth.
- MF(U, W) is proper iff Crit(W) is proper.

Facts

- MF(U, W) is linear over Crit(W).
- MF(U, W) is smooth, since we assumed U is smooth.
- MF(U, W) is proper iff Crit(W) is proper.
- The Serre functor on MF(U, W) is a shift of $-\otimes \omega_U$.

Facts

Background

- MF(U, W) is linear over Crit(W).
- MF(U, W) is smooth, since we assumed U is smooth.
- MF(U, W) is proper iff Crit(W) is proper.
- The Serre functor on MF(U, W) is a shift of $-\otimes \omega_U$.

Example (Classical Knörrer periodicity)

$$\mathcal{E}=\left(egin{array}{c} \mathcal{O} \xrightarrow{x} \mathcal{O}[-1] \end{array}
ight) \in \mathsf{MF}(\mathbb{A}^2,xy)$$
 is an exceptional object, where

R-charge is |x| = 0, |y| = 2. It is quasi-isomorphic to \mathcal{O}/y , so

$$\mathcal{H}om(\mathcal{E},\mathcal{E}) = \mathcal{H}om(\mathcal{O} \xrightarrow{\stackrel{x}{\longleftarrow}} \mathcal{O}[-1], \mathcal{O}/y)$$
$$= (\mathcal{O}/y[1] \xrightarrow{x} \mathcal{O}/y) = \mathcal{O}/(x,y).$$

This is a sheaf on $Crit(xy) = \{x = y = 0\}$, as expected.

Theorem (Knörrer periodicity (Orlov '06, ...))

Suppose $X \subset U$ is a hypersurface cut out by $f \in H^0(U, \mathcal{L})$. Then

$$D^b(X) \simeq \mathsf{MF}(\mathsf{Tot}\,\mathcal{L}^\vee,\mathit{fp}); \qquad \mathscr{F} \mapsto \big(\ \mathscr{F} \xleftarrow{f}_{p} \mathscr{F} \otimes \mathcal{L}[-1] \ \big),$$

where the fiber coordinate $p \in H^0(\operatorname{Tot} \mathcal{L}^{\vee}, \mathcal{L}^{\vee})$ is given R-charge |p| = 2.

Remark

Here
$$\operatorname{Crit}(fp) = \{f = p = 0\} \cup \{\operatorname{Crit}(f)\} = X \cup \mathcal{L}^{\vee}|_{\operatorname{Sing}(X)}$$
.

Theorem (Knörrer periodicity (Orlov '06, ...))

Suppose $X \subset U$ is a hypersurface cut out by $f \in H^0(U, \mathcal{L})$. Then

$$D^b(X) \simeq \mathsf{MF}(\mathsf{Tot}\,\mathcal{L}^ee, \mathit{fp}); \qquad \mathscr{F} \mapsto \big(\mathscr{F} \xleftarrow{f}_p \mathscr{F} \otimes \mathcal{L}[-1] \big),$$

where the fiber coordinate $p \in H^0(\operatorname{Tot} \mathcal{L}^{\vee}, \mathcal{L}^{\vee})$ is given R-charge |p| = 2.

Remark

Here $Crit(fp) = \{f = p = 0\} \cup \{Crit(f)\} = X \cup \mathcal{L}^{\vee}|_{Sing(X)}$. This is proper over *X* iff *X* is smooth.

4D > 4A > 4B > 4B > B 990

Theorem (Knörrer periodicity (Orlov '06, ...))

Suppose $X \subset U$ is a hypersurface cut out by $f \in H^0(U, \mathcal{L})$. Then

$$D^b(X) \simeq \mathsf{MF}(\mathsf{Tot}\,\mathcal{L}^\vee,\mathit{fp}); \qquad \mathscr{F} \mapsto \big(\ \mathscr{F} \xleftarrow{f}_{p} \mathscr{F} \otimes \mathcal{L}[-1] \ \big),$$

where the fiber coordinate $p \in H^0(\operatorname{Tot} \mathcal{L}^{\vee}, \mathcal{L}^{\vee})$ is given R-charge |p| = 2.

Remark

Here $\operatorname{Crit}(fp) = \{f = p = 0\} \cup \{\operatorname{Crit}(f)\} = X \cup \mathcal{L}^{\vee}|_{\operatorname{Sing}(X)}$.

This is proper over X iff X is smooth.

 \implies matches the weak categorical resolution $D^b(X)$.

Theorem (Knörrer periodicity (Orlov '06, ...))

Suppose $X \subset U$ is a hypersurface cut out by $f \in H^0(U, \mathcal{L})$. Then

$$D^b(X)\simeq \mathsf{MF}(\mathsf{Tot}\,\mathcal{L}^ee,\mathit{fp}); \qquad \mathscr{F}\mapsto ig(\mathscr{F} \stackrel{f}{\underset{p}{\longleftarrow}} \mathscr{F}\otimes\mathcal{L}[-1]ig),$$

where the fiber coordinate $p \in H^0(\operatorname{Tot} \mathcal{L}^{\vee}, \mathcal{L}^{\vee})$ is given R-charge |p| = 2.

Remark

Here $Crit(fp) = \{f = p = 0\} \cup \{Crit(f)\} = X \cup \mathcal{L}^{\vee}|_{Sing(X)}$.

This is proper over X iff X is smooth.

 \implies matches the weak categorical resolution $D^b(X)$.

Idea ("Exoflops" Aspinwall '14)

We find proper categorical resolutions of X by compactifying Crit(fp)inside Tot \mathcal{L}^{\vee} , i.e. partially compactifying Tot \mathcal{L}^{\vee} .

What does $\mathfrak{Perf}(X)$ correspond to? Vector bundles $\mathcal E$ map to

$$\left(\begin{array}{c} \mathcal{E} \xrightarrow{f} \mathcal{E} \otimes \mathcal{L}[-1] \end{array}\right) = \mathcal{E}/p,$$

and in fact $\mathfrak{Perf}(X)=\mathsf{MF}_{\{p=0\}}(\mathsf{Tot}\,\mathcal{L}^\vee,\mathit{fp})$ is the subcategory supported at $\{p=0\}$.

What does $\mathfrak{Perf}(X)$ correspond to? Vector bundles $\mathcal E$ map to

$$\left(\begin{array}{c} \mathcal{E} \xrightarrow{f} \mathcal{E} \otimes \mathcal{L}[-1] \end{array}\right) = \mathcal{E}/p,$$

and in fact $\mathfrak{Perf}(X) = \mathsf{MF}_{\{p=0\}}(\mathsf{Tot}\,\mathcal{L}^\vee,\mathit{fp})$ is the subcategory supported at $\{p=0\}$. The "geometric" part of the critical locus $\mathsf{Crit}(\mathit{fp})$.

What does $\mathfrak{Perf}(X)$ correspond to? Vector bundles $\mathcal E$ map to

$$\left(\begin{array}{c} \mathcal{E} & \stackrel{f}{\longleftarrow} \mathcal{E} \otimes \mathcal{L}[-1] \end{array}\right) = \mathcal{E}/p,$$

and in fact $\mathfrak{Perf}(X) = \mathsf{MF}_{\{p=0\}}(\mathsf{Tot}\,\mathcal{L}^\vee,fp)$ is the subcategory supported at $\{p=0\}$. The "geometric" part of the critical locus $\mathsf{Crit}(fp)$.

Remark

If $j:U\hookrightarrow \overline{U}$ is a partial compactification, then $j_*\dashv j^*\dashv j_*$.

What does $\mathfrak{Perf}(X)$ correspond to? Vector bundles $\mathcal E$ map to

$$\left(\begin{array}{c} \mathcal{E} & \stackrel{f}{\longleftarrow} \mathcal{E} \otimes \mathcal{L}[-1] \end{array}\right) = \mathcal{E}/p,$$

and in fact $\mathfrak{Perf}(X) = \mathsf{MF}_{\{p=0\}}(\mathsf{Tot}\,\mathcal{L}^\vee,fp)$ is the subcategory supported at $\{p=0\}$. The "geometric" part of the critical locus $\mathsf{Crit}(fp)$.

Remark

If $j: U \hookrightarrow \overline{U}$ is a partial compactification, then $j_* \dashv j^* \dashv j_*$. \Longrightarrow this method produces weakly crepant proper categorical resolutions.

What does $\mathfrak{Perf}(X)$ correspond to? Vector bundles $\mathcal E$ map to

$$\left(\begin{array}{c} \mathcal{E} \xrightarrow{f} \mathcal{E} \otimes \mathcal{L}[-1] \end{array}\right) = \mathcal{E}/p,$$

and in fact $\mathfrak{Perf}(X) = \mathsf{MF}_{\{p=0\}}(\mathsf{Tot}\,\mathcal{L}^\vee,fp)$ is the subcategory supported at $\{p=0\}$. The "geometric" part of the critical locus $\mathsf{Crit}(fp)$.

Remark

If $j: U \hookrightarrow \overline{U}$ is a partial compactification, then $j_* \dashv j^* \dashv j_*$. \Longrightarrow this method produces weakly crepant proper categorical resolutions.

Remark

By Knörrer periodicity $f \rightsquigarrow f + x^2 + y^2$, studying curves / surfaces also gives results for higher-dimensional hypersurfaces.

Node $X=\{xy=0\}\subset \mathbb{A}^2$, normalization $\widetilde{X}\subset \mathsf{Bl}_0\,\mathbb{A}^2=\mathsf{Tot}\,\mathcal{O}(-1)_{\mathbb{P}^1}$.

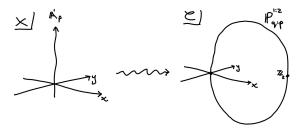
Node $X=\{xy=0\}\subset \mathbb{A}^2$, normalization $\widetilde{X}\subset \mathsf{Bl}_0\,\mathbb{A}^2=\mathsf{Tot}\,\mathcal{O}(-1)_{\mathbb{P}^1}.$

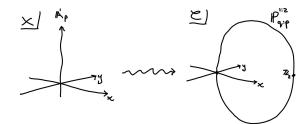
$$\begin{array}{c} X \xrightarrow{\mathrm{KP}} & (\mathbb{A}^3, xyp) \\ \uparrow & \uparrow & \downarrow \\ \widetilde{X} \xrightarrow{\mathrm{KP}} & (\mathrm{Tot}\,\mathcal{O}(-1)_q \oplus \mathcal{O}(-2)_p, xyp) \xrightarrow{\mathrm{flip}} & (\mathrm{Tot}\,\mathcal{O}(-1)_{\mathbb{P}^{1:2}_{q:p}}^2, xyp) = \mathscr{C} \end{array}$$

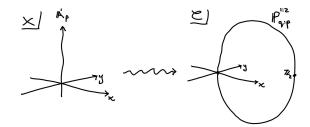
Node $X = \{xy = 0\} \subset \mathbb{A}^2$, normalization $\widetilde{X} \subset \mathsf{Bl}_0 \, \mathbb{A}^2 = \mathsf{Tot} \, \mathcal{O}(-1)_{\mathbb{P}^1}$.

$$\begin{array}{c} X \xrightarrow{\mathrm{KP}} & (\mathbb{A}^3, xyp) \\ \uparrow & \uparrow \\ \widetilde{X} \xrightarrow{\mathrm{KP}} & (\operatorname{Tot} \mathcal{O}(-1)_q \oplus \mathcal{O}(-2)_p, xyp) \xrightarrow{\mathrm{flip}} & (\operatorname{Tot} \mathcal{O}(-1)_{q,p}^{2}, xyp) = \mathscr{C} \end{array}$$

Here $\mathscr{C} = \langle D^b(\widetilde{X}), D^b(\mathrm{pt}) \rangle$ matches Kuznetsov–Lunts gluing.

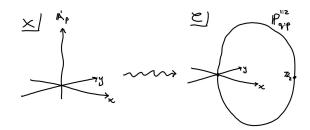






• At
$$p = 0$$
: $\mathfrak{Perf}(X)$

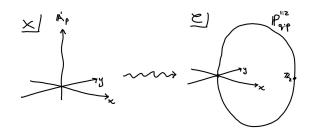
• At
$$q=0$$
: $\ker \pi_*=D_0^b([\mathbb{A}^1/\mathbb{Z}_2])$.



- At p = 0: $\mathfrak{Perf}(X)$
- At q = 0: $\ker \pi_* = D_0^b([\mathbb{A}^1/\mathbb{Z}_2])$.

Fact

$$D^b([\mathbb{A}^1/\mathbb{Z}_2]) = \langle \mathcal{O}, \mathcal{O}_0 \rangle = \langle D^b(\mathbb{A}^1), D^b(\mathrm{pt}) \rangle$$



- At p = 0: $\mathfrak{Perf}(X)$
- At q = 0: $\ker \pi_* = D_0^b([\mathbb{A}^1/\mathbb{Z}_2])$.

Fact

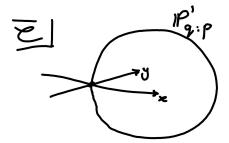
$$\begin{array}{l} D^b([\mathbb{A}^1/\mathbb{Z}_2]) = \langle \mathcal{O}, \mathcal{O}_0 \rangle = \langle D^b(\mathbb{A}^1), D^b(\mathrm{pt}) \rangle \\ \Longrightarrow D^b_0([\mathbb{A}^1/\mathbb{Z}_2]) = \langle D^b_0(\mathbb{A}^1), D^b(\mathrm{pt}) \rangle \text{ absorption!} \end{array}$$

So
$$\mathscr{C} = \langle \overline{\mathscr{C}}, D^b(\mathrm{pt}) \rangle$$
.

So $\mathscr{C}=\langle\overline{\mathscr{C}},D^b(\mathrm{pt})\rangle.$ We can get $\overline{\mathscr{C}}$ directly:

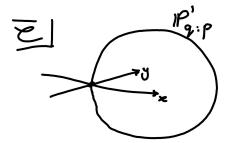
So $\mathscr{C} = \langle \overline{\mathscr{C}}, D^b(\mathrm{pt}) \rangle$. We can get $\overline{\mathscr{C}}$ directly:

$$\overline{\mathscr{C}} = \mathsf{MF}(\mathsf{Tot}(\mathcal{O}_{\mathsf{x}} \oplus \mathcal{O}(-1)_{\mathsf{y}} \to \mathbb{P}^1_{q:p}), \mathsf{xyp}) \xrightarrow{\{q \neq 0\}} \mathsf{MF}(\mathbb{A}^3, \mathsf{xyp})$$



So $\mathscr{C} = \langle \overline{\mathscr{C}}, D^b(\mathrm{pt}) \rangle$. We can get $\overline{\mathscr{C}}$ directly:

$$\overline{\mathscr{C}} = \mathsf{MF}(\mathsf{Tot}(\mathcal{O}_x \oplus \mathcal{O}(-1)_y \to \mathbb{P}^1_{q:p}), \mathit{xyp}) \xrightarrow{\{q \neq 0\}} \mathsf{MF}(\mathbb{A}^3, \mathit{xyp})$$



The null category at $\{q=0\}$ is $D_0^b(\mathbb{A}^1) = \mathfrak{Perf}(k[\theta]/\theta^2)$, via Koszul duality (work out R-charge $\Longrightarrow |\theta| = 3 \Longrightarrow 3$ -spherical object).

By localization, $D_{\operatorname{Sg}}(X)=\operatorname{MF}_{\{p\neq 0\}}(\operatorname{Tot}\mathcal{L}^{\vee},\mathit{fp})$ is the branch bit we are seeing, separated from X, pre-compactification.

By localization, $D_{\mathrm{Sg}}(X)=\mathrm{MF}_{\{p\neq 0\}}(\mathrm{Tot}\,\mathcal{L}^\vee,fp)$ is the branch bit we are seeing, separated from X, pre-compactification. For the node this is $\mathbb{A}^1_p-\{0\}$, i.e. $\mathbb{C}[p^{\pm 1}]$, with |p|=2.

By localization, $D_{\mathrm{Sg}}(X)=\mathsf{MF}_{\{p\neq 0\}}(\mathsf{Tot}\,\mathcal{L}^\vee,\mathit{fp})$ is the branch bit we are seeing, separated from X, pre-compactification. For the node this is $\mathbb{A}^1_p-\{0\}$, i.e. $\mathbb{C}[p^{\pm 1}]$, with |p|=2.

The choice of X with this particular D_{Sg} compactifies the p=0 hole.

By localization, $D_{\mathrm{Sg}}(X)=\mathsf{MF}_{\{p\neq 0\}}(\mathsf{Tot}\,\mathcal{L}^\vee,\mathit{fp})$ is the branch bit we are seeing, separated from X, pre-compactification. For the node this is $\mathbb{A}^1_p-\{0\}$, i.e. $\mathbb{C}[p^{\pm 1}]$, with |p|=2.

The choice of X with this particular D_{Sg} compactifies the p=0 hole. The choice of resolution $\mathscr C$ compactifies the $p=\infty$ hole.

By localization, $D_{\mathrm{Sg}}(X)=\mathsf{MF}_{\{p\neq 0\}}(\mathsf{Tot}\,\mathcal{L}^\vee,fp)$ is the branch bit we are seeing, separated from X, pre-compactification. For the node this is $\mathbb{A}^1_p-\{0\}$, i.e. $\mathbb{C}[p^{\pm 1}]$, with |p|=2.

The choice of X with this particular D_{Sg} compactifies the p=0 hole. The choice of resolution $\mathscr C$ compactifies the $p=\infty$ hole. These are geometrically independent!

By localization, $D_{\mathrm{Sg}}(X)=\mathsf{MF}_{\{p\neq 0\}}(\mathsf{Tot}\,\mathcal{L}^\vee,\mathit{fp})$ is the branch bit we are seeing, separated from X, pre-compactification. For the node this is $\mathbb{A}^1_p-\{0\}$, i.e. $\mathbb{C}[p^{\pm 1}]$, with |p|=2.

The choice of X with this particular D_{Sg} compactifies the p=0 hole. The choice of resolution $\mathscr C$ compactifies the $p=\infty$ hole. These are geometrically independent!

Conjecture

 \bullet Categorical resolutions of isolated hypersurface singularities should be linear over \mathbb{P}^1 in this way.

By localization, $D_{\mathrm{Sg}}(X)=\mathrm{MF}_{\{p\neq 0\}}(\mathrm{Tot}\,\mathcal{L}^\vee,\mathit{fp})$ is the branch bit we are seeing, separated from X, pre-compactification. For the node this is $\mathbb{A}^1_p-\{0\}$, i.e. $\mathbb{C}[p^{\pm 1}]$, with |p|=2.

The choice of X with this particular D_{Sg} compactifies the p=0 hole. The choice of resolution $\mathscr C$ compactifies the $p=\infty$ hole. These are geometrically independent!

Conjecture

• Categorical resolutions of isolated hypersurface singularities should be linear over \mathbb{P}^1 in this way. The $\{p \neq 0\}$ part is $\mathscr{C}/\mathfrak{Perf}(X)$, the $\{q \neq 0\}$ part is $D^b(X)$, and they intersect in $D_{\operatorname{Sg}}(X)$.

By localization, $D_{\mathrm{Sg}}(X)=\mathrm{MF}_{\{p\neq 0\}}(\mathrm{Tot}\,\mathcal{L}^\vee,\mathit{fp})$ is the branch bit we are seeing, separated from X, pre-compactification. For the node this is $\mathbb{A}^1_p-\{0\}$, i.e. $\mathbb{C}[p^{\pm 1}]$, with |p|=2.

The choice of X with this particular D_{Sg} compactifies the p=0 hole. The choice of resolution $\mathscr C$ compactifies the $p=\infty$ hole. These are geometrically independent!

Conjecture

- Categorical resolutions of isolated hypersurface singularities should be linear over \mathbb{P}^1 in this way. The $\{p \neq 0\}$ part is $\mathscr{C}/\mathfrak{Perf}(X)$, the $\{q \neq 0\}$ part is $D^b(X)$, and they intersect in $D_{\operatorname{Sg}}(X)$.
- The data of $\mathscr{C}/\mathfrak{Perf}(X) \to D_{\operatorname{Sg}}(X)$ should then determine the resolution via gluing with $D^b(X) \to D_{\operatorname{Sg}}(X)$.
- In particular, if $D_{Sg}(X') = D_{Sg}(X)$ then X' and X should have the same categorical resolution theory.

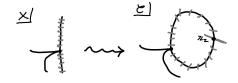
Cusp
$$X = \{y^2 = x^3\} \subset \mathbb{A}^2$$
, normalization $\widetilde{X} \subset \mathsf{Bl}_0 \, \mathbb{A}^2$.

Cusp
$$X=\{y^2=x^3\}\subset \mathbb{A}^2$$
, normalization $\widetilde{X}\subset \operatorname{Bl}_0\mathbb{A}^2$. We get
$$\mathscr{C}=\operatorname{MF}(\operatorname{Tot}\mathcal{O}(-1)^2_{\mathbb{P}^{1:2}},(y^2-x^3q)p)=\langle D^b(\widetilde{X}),D^b(\operatorname{pt})\rangle.$$

Since $Crit(y^2 - x^3q) = \{y = x^3 = x^2q = 0\}$, we get more non-reduced fuzz at q = 0.

Cusp
$$X = \{y^2 = x^3\} \subset \mathbb{A}^2$$
, normalization $\widetilde{X} \subset \operatorname{Bl}_0 \mathbb{A}^2$. We get

$$\mathscr{C}=\mathsf{MF}(\mathsf{Tot}\,\mathcal{O}(-1)^2_{\mathbb{P}^{1:2}},(y^2-x^3q)p)=\langle D^b(\widetilde{X}),D^b(\mathsf{pt})\rangle.$$

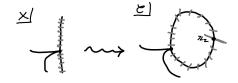


Since $\operatorname{Crit}(y^2-x^3q)=\{y=x^3=x^2q=0\}$, we get more non-reduced fuzz at q=0.

$$\mathscr{C}/\mathfrak{Perf}(X) = \mathsf{MF}([\mathbb{A}^3/\mathbb{Z}_2], y^2 - x^3q)$$

Cusp
$$X = \{y^2 = x^3\} \subset \mathbb{A}^2$$
, normalization $\widetilde{X} \subset \mathsf{Bl}_0 \, \mathbb{A}^2$. We get

$$\mathscr{C}=\mathsf{MF}(\mathsf{Tot}\,\mathcal{O}(-1)^2_{\mathbb{P}^{1:2}},(y^2-x^3q)p)=\langle D^b(\widetilde{X}),D^b(\mathsf{pt})\rangle.$$

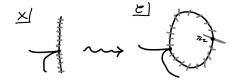


Since $Crit(y^2 - x^3q) = \{y = x^3 = x^2q = 0\}$, we get more non-reduced fuzz at q = 0.

$$\mathscr{C}/\mathfrak{Perf}(X) = \mathsf{MF}([\mathbb{A}^3/\mathbb{Z}_2], y^2 - x^3q) = \mathsf{MF}(\mathbb{A}^2, x^3q)$$

Cusp
$$X = \{y^2 = x^3\} \subset \mathbb{A}^2$$
, normalization $\widetilde{X} \subset \mathsf{Bl}_0 \, \mathbb{A}^2$. We get

$$\mathscr{C}=\mathsf{MF}(\mathsf{Tot}\,\mathcal{O}(-1)^2_{\mathbb{P}^{1:2}},(y^2-x^3q)p)=\langle D^b(\widetilde{X}),D^b(\mathsf{pt})\rangle.$$

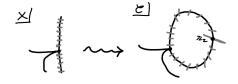


Since $Crit(y^2 - x^3q) = \{y = x^3 = x^2q = 0\}$, we get more non-reduced fuzz at q = 0.

$$\mathscr{C}/\mathfrak{Perf}(X) = \mathsf{MF}([\mathbb{A}^3/\mathbb{Z}_2], y^2 - x^3q) = \mathsf{MF}(\mathbb{A}^2, x^3q) = D^b(k[x]/x^3),$$

Cusp
$$X = \{y^2 = x^3\} \subset \mathbb{A}^2$$
, normalization $\widetilde{X} \subset \mathsf{Bl}_0 \, \mathbb{A}^2$. We get

$$\mathscr{C}=\mathsf{MF}(\mathsf{Tot}\,\mathcal{O}(-1)^2_{\mathbb{P}^{1:2}},(y^2-x^3q)p)=\langle D^b(\widetilde{X}),D^b(\mathsf{pt})\rangle.$$



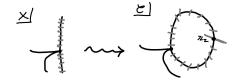
Since $Crit(y^2 - x^3q) = \{y = x^3 = x^2q = 0\}$, we get more non-reduced fuzz at q = 0.

$$\mathscr{C}/\mathfrak{Perf}(X)=\mathsf{MF}([\mathbb{A}^3/\mathbb{Z}_2],y^2-x^3q)=\mathsf{MF}(\mathbb{A}^2,x^3q)=D^b(k[x]/x^3),$$

and the null category at $\{q=0\}$ is $\mathfrak{Perf}(\mathbb{C}[x]/x^3)$;

Cusp
$$X = \{y^2 = x^3\} \subset \mathbb{A}^2$$
, normalization $\widetilde{X} \subset \mathsf{Bl_0} \, \mathbb{A}^2$. We get

$$\mathscr{C}=\mathsf{MF}(\mathsf{Tot}\,\mathcal{O}(-1)^2_{\mathbb{P}^{1:2}},(y^2-x^3q)p)=\langle D^b(\widetilde{X}),D^b(\mathsf{pt})\rangle.$$



Since $\operatorname{Crit}(y^2-x^3q)=\{y=x^3=x^2q=0\}$, we get more non-reduced fuzz at q=0.

$$\mathscr{C}/\mathfrak{Perf}(X) = \mathsf{MF}([\mathbb{A}^3/\mathbb{Z}_2], y^2 - x^3q) = \mathsf{MF}(\mathbb{A}^2, x^3q) = D^b(k[x]/x^3),$$

and the null category at $\{q=0\}$ is $\mathfrak{Perf}(\mathbb{C}[x]/x^3)$; we find an object with endomorphisms $k[x]/x^3$ (work out R-charge $\Longrightarrow |x|=1$).

Example $k[x]/x^n$

We can resolve $k[x]/x^n$ by compactifying $(\mathbb{A}^2, x^n p)$:

$$\mathscr{C} = \mathsf{MF}(\mathsf{Tot}(\mathcal{O}(-1)_{\mathsf{x}} \to \mathbb{P}^{1:n}_{q:p}), \mathsf{x}^n p).$$

$$\mathscr{C}/\mathfrak{Perf}(X) = \mathsf{MF}([\mathbb{A}^2/\mathbb{Z}_n], x^n) = \langle D^b(\mathbb{A}^1), \dots, D^b(\mathbb{A}^1) \rangle$$

with the null category at q = 0 corresponding to

$$\ker \pi_* = \langle D_0^b(\mathbb{A}^1), \dots, D_0^b(\mathbb{A}^1) \rangle$$

i.e. a semi-orthogonal sequence of spherical objects.

Example $k[x]/x^n$

We can resolve $k[x]/x^n$ by compactifying $(\mathbb{A}^2, x^n p)$:

$$\mathscr{C} = \mathsf{MF}(\mathsf{Tot}(\mathcal{O}(-1)_{\mathsf{x}} \to \mathbb{P}^{1:n}_{q:p}), \mathsf{x}^n p).$$

$$\mathscr{C}/\mathfrak{Perf}(X) = \mathsf{MF}([\mathbb{A}^2/\mathbb{Z}_n], x^n) = \langle D^b(\mathbb{A}^1), \dots, D^b(\mathbb{A}^1) \rangle$$

with the null category at q=0 corresponding to

$$\ker \pi_* = \langle D_0^b(\mathbb{A}^1), \dots, D_0^b(\mathbb{A}^1) \rangle$$

i.e. a semi-orthogonal sequence of spherical objects. This is equivalent to the Auslander resolution.

Thank you!