Stringy Kähler moduli of flops via GIT

DANCE Seminar

15.12.2025

Aporva Varshney, University College London Supervised by Prof. Ed Segal

1 Flops

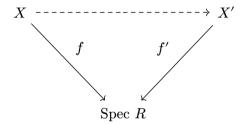
Setting

- Fix a map $f: X \to \operatorname{Spec} R$ where X is a complex quasi-projective 3-fold.
- The map contracts a curve $C \cong \mathbb{P}^1$ to a point.
- Crucially, $f^{-1}(0)$ is non-reduced.
- The **length** of the flopping contraction is the multiplicity of C in $f^{-1}(0)$.
- **Theorem** [Katz-Morrison '92]: The length l is such that $1 \le l \le 6$ and all values can be obtained.

Setting

- Fix a map $f: X \to \operatorname{Spec} R$ where X is a complex quasi-projective 3-fold.
- The map contracts a curve $C \cong \mathbb{P}^1$ to a point.
- [Atiyah flop, l=1] $X=\mathcal{O}(-1)^{\oplus 2}_{\mathbb{P}^1} \to \left\{x^2+y^2=z^2+w^2\right\}$
- [Laufer flop, l = 2] $X \to \{x^2 + y^3 = tz^2 + yt^3\}$.

Flop-flop autoequivalence



- [Bridgeland '00] showed that the birational map $X \dashrightarrow X'$ induces a derived equivalence $D^b(X) \simeq D^b(X')$.
- There is a flop-flop autoequivalence $D^b(X) \to D^b(X') \to D^b(X)$.

Spherical Twists

- The flop-flop can be understood as a "twist" around the curve C.
- Illustrative example: for a divisor D, one can take the inverse twist around D by tensoring with $\mathcal{O}(-D)$. Note there is a short exact sequence

$$0 \to \mathcal{O}(-D) \to \mathcal{O} \to \mathcal{O}_D \to 0.$$

• For the Atiyah flop, there is a resolution

$$0 \to \mathcal{O}(1) \to \mathcal{O}^{\oplus 2} \to \mathcal{O}(-1) \to \mathcal{O}_C(-1) \to 0.$$

• The flop-flop will send the line bundle O(-1) to the complex $\mathcal{O}(1) \to \mathcal{O}^{\oplus 2}$.

Spherical Twists

- For the Atiyah flop, the sheaf $\mathcal{O}_C(-1)$ is a *spherical object* [Seidel–Thomas "00].
- [Anno-Logvinenko '13] The modern way to phrase the autoequivalence is to take a spherical functor

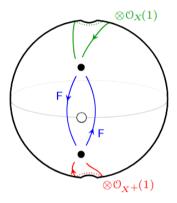
$$F:D^b(A)\to D^b(X).$$

- The twist around F is $Cone(FR \to id)$.
- In the Atiyah flop case, $F: D^b(\mathbb{C}) \to D^b(X)$.
- I will write down autoequivalences by writing down a functor.

SKMS for the Atiyah flop

- In mirror symmetry, the SKMS is "the moduli space of complex structures of the mirror."
- Loops give us autoequivalences of $\operatorname{Fuk}(\hat{X}) \simeq D^b(X)$.
- [Aspinwall '03] used physical ideas to describe the SKMS for the Atiyah flop.

SKMS for the Atiyah flop (ii)



(Image from [Donovan-Wemyss '19])

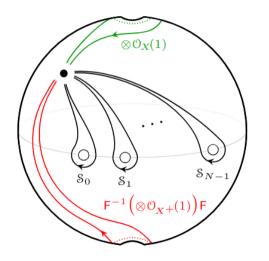
The SKMS in higher lengths

- [Toda '08] made this picture rigorous using Bridgeland stability, for flops of length 1.
- This was extended by [Hirano-Wemyss, '19] to flops of any length.
- The idea is to take

$$\mathcal{D} = \left\{ \mathcal{F} \in D^b(X) \mid \text{supp } \mathcal{F} \subset C \right\}$$

and define the SKMS as Stab $\mathcal{D}/$ Aut $\mathcal{D}.$

The SKMS in higher lengths



 In general, there are N punctures on the equator, where N depends only on the length l of the flop as follows.

ℓ	1	2	3	4	5	6
\overline{N}	1	2	4	6	10	12

(Images taken from [Donovan–Wemyss '19])

Autoequivalences

000000000000

(Following the work of Donovan–Wemyss)

- The twist around the first puncture is:
 - The flop-flop;
 - ▶ The twist around *C*;
 - Twist around $D^b(A_{\text{con}}) \to D^b(X)$ where A_{con} is the "contraction algebra".
- The twist around the last puncture is:
 - ightharpoonup The twist around lC:
 - ▶ Twist around $D^b(A_{\text{fib}}) \to D^b(X)$ where A_{fib} is the "fibre algebra".
- The contraction and fibre algebras are finite dimensionals possibly non-commutative, representing the deformations of C and lC respectively.

GIT for the Atiyah flop

• The Atiyah flop arises as a GIT quotient of a stack \mathfrak{X} :

$$X_+ \hookrightarrow \left[\mathbb{A}^4/\mathbb{C}^*\right] \hookleftarrow X_-$$

where the action is $\lambda \cdot (x, y, z, w) = (\lambda x, \lambda y, \lambda^{-1} z, \lambda^{-1} w)$.

• The two quotients arise by deleting (x = y = 0) and (z = w = 0) respectively.

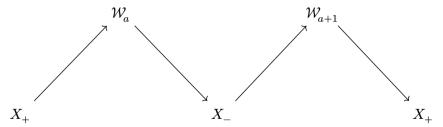
Windows

[Herbst-Hori-Page '08, Segal '11, Halpern-Leistner '15, Ballard-Favero-Katzarkov '12]

- Writing $X_+=\mathcal{O}(-1)^{\oplus 2}_{\mathbb{P}^1}$, it is clear that $D^b(X_+)=\langle \mathcal{O}(a),\mathcal{O}(a+1)\rangle$.
- These bundles also exist on the stack \mathfrak{X} .
- We call $\mathcal{W}_a := \langle \mathcal{O}(a), \mathcal{O}(a+1) \rangle \subset D^b(\mathfrak{X})$ a window.
- Restriction to the open set X_+ induces a derived equivalence.

Window shifts

- If W is a self-dual representation of G, then window subcategories are derived equivalent to all GIT quotients.
- This gives us window-shift autoequivalences.

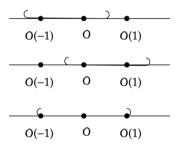


Window shifts as spherical twists

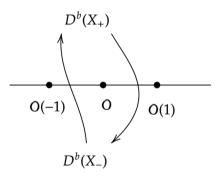
- These can be written as spherical functors with source category given by the subcategory of $D^b(\mathfrak{X})$ generated by some sheaves on the unstable locus for X_- .
- In the Atiyah flop case, we can take $\langle \mathcal{O}_{z=w=0} \rangle \subset D^b(\mathfrak{X}).$
- One can compute $\operatorname{End}_{\mathfrak{X}}(\mathcal{O}_{z=w=0}) \cong \mathbb{C}$.
- So we get a spherical functor $D^b(\mathbb{C}) \to D^b(X_+)$, recovering the classical story.

SKMS using windows

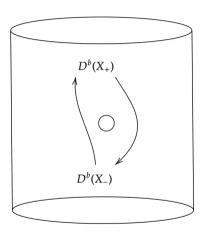
• [Halpern-Leistner-Sam '16, Spenko-Van den Bergh '19] defined a SKMS for any GIT quotient of a self-dual representation of a reductive group G using windows.



SKMS using windows (ii)



SKMS using windows (iii)



4 Two things give you the same answer

Universal length 2 flop

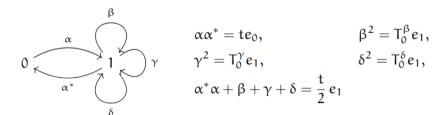
• For any length flop, there is a "universal" flop.



- e.g. the universal flop of length 1 is the Atiyah flop.
- Derived autoequivalences of a threefold flop should be induced by those of the universal flop.

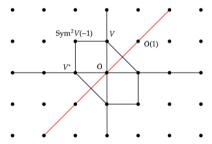
Theorems

- [V '25] Theorem I: The universal length 2 flop can be obtained as a GIT quotient of the form [W/G], where $G=\operatorname{GL}_2$ and W is a self-dual representation.
 - ▶ Based on work by [Karmazyn '17], using quiver GIT.



Theorems (ii)

• Theorem II: The associated SKMS is a sphere with 2 north and south pole punctures, and 2 equatorial punctures.



Theorems (iii)

•••••

• Theorem III: Monodromy around the equatorial punctures acts as twists around *universal* contraction and fibre algebras.